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A POSTSCRIPT 710 "DYNAMIC PROBLEMS IN THE THEORY OF THE FIRM"

by

Harvey M. Wagner
Stantord University

I. Introduction.

In & previocus paper [2] we discussed the combined use of traditional
economic constructs and dynamic progremming for solutions to several
inter-temporal problems in the theory of the firm (that produces a single
commodity).l As a specific application of these techniques, we presented
[3] & method for solving a dynamic version of the economic lot size model.

The purpose of this postscript is (i) to demonstrate the algorithm suggested
for the dynsmic economic lot size model is also applicable to situations in
which the cost curves (which may differ from period to period) have non-
increacing marginal costs as & function of outputa, n.g., due to quantity
discounts, and (1i) to describe a forward algorithm for solving optimal pricing
and output problems in which the cost curves have non-cecreasing murginal costs

as & function of output.3

+ The reader should recognize the parallel existing between "production"
and "ordering inventory;" for ease of exposition, we frame our discussion
in the language of "production,"

Figuratively "increasing merginal returns to scele."

3 Figuratively "decreasing marginai returns to scale.'




Throughout we assume that each marginal revenue relation is a non-increasing
function of tne curresponding period sales, and initial and ending inventory
are zero.

We consider finding a sequence of output qo(t) and prices, which in
turn determine sales qs(t) , that maximizes total profits over the entirety
of periods t = 1,2,...,T . The period marginal revenue and cost functions
are denoted by MR[qS(t)] and MC[qO(t)] , and the unit cost of carrying
an item of inventory from period t to period t+1 1is denoted by it .

It will be helpful to recall the previous system of diagrams [2; ﬁ. S ls
arraying each period's marginal revenue and cost curves, constructed such
that the second period's curves are shifted downward by the amount il 5 the

taoird period's by the amount 1, + 1

1 Dt and the T-th period's by the

smount il + 12 oot iT-l . We permit the marginal functions to have
liorizontal segments (representing a constant unit cost or price over a

range of values for output or ».” _s), and adopt the convention of connecting
two 'adjacent" horizontal segments vy a vertical segmentu5 It should be
noted that in the commonly considered case of a fixed amount demanded St

for each period t (at some fixed price p ), the marginal revenue curve

1s represented as a step function

T

In several cases only trivial alterations in the algcorithms are needed
to remove these assumptions.

“ In other words, if a marginal curve is in v=zi- .. step function, the "rise"
in the step 1s drewn as well as the "flat."
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p 1if q[(t) <8,
MR[q_(t)] =
0 otherwise.
In the case of a capacity constraint on period production, the marginal

cost curve 1s depicted as rising vertically at this point.

I.. The Case of Non-Increasing Marginal Costs.

In [2,3] we discussed the model in which the marginal cost curve is
horizontal6 and identical in all periods, and non-negative setup costs are
incurred if production takes place. The suggested forward algorithm is
briefly described as:

At period t* (starting with t* = 1 ) compute the profits from
producing in period t** (t** = 1,2,...,t¥%) , and filling all qs(t),7
t = th% , t¥% ¢+ 1,...,t% , by production in period t** . Add to this
figure the profits of using an optimal policy in periods t = 1,2,...,t¥%-1
considered by themselves.8 Select producing in the t**¥ that offers the max-
imum total profits; this ylelds an optimal policy for the first t* periods.
Continue until +t* = T

That this algorithm leads to an optimal solution i1s based on the funda-
mental proposition [3, p. 91]: There exists an optimal program such that at

any period t one need not both produce ard bring in inventory.

C-nsequently capacity constraints are lgnored.

T gee {2, p. 61] for the method of determining q (t) . In the commonly
considered case of & fixed amount demanded for each period, qs(t) ere of
course pre-determined.

Since the algorithm starts at t¥ = 1 , these profit figures have been
previously computed.
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We assert that the same algorithm leads to an optimal solution if the
marginal cost curves are non-increasing and not necessarily identical in
all periods; as before, non-negative setup costs may be included. The
reason underlying the assertion is that the fundamental proposition
continues to hold. We sketch a proof:

Suppose & trial solution indicates in period t* +that both inventory
is brought in and prcduction takes place. Specifically, let SP} denote
the set of periods supplying inventory to period t* . Consider the current
value of marginal cost for each 1t € {P} , and add to this number the carrying
costs charged for bringing an additional unit of production from t to t* .
Let MC' ©be the minimum value of these sums and t' the associated period.
If MC' 1is less than the MC for the last unit produced in period t , we
may revise the trial solution so as to increase production in period t' and
eliminate 1t in period t . If MC' 1s not less than the MC of the last
unit produced in periocd t , we may revise the trial solution so as to
increase production in period t equal to the amount of incoming inventory
and eliminate ti.e corresponding production in [ P } . Such alterations
do not increase the total cost over that of the trial solution because of
our hypothesis of decreasing marginal cost functions.

We should recognize that cur present assumption about marginal costs
is too weak to prove the Planning Horizon Theorem [3], which in part states
that 1f 1t 1s optimal to produce when periods 1 through t* are considered
by themselves, then it ls sufficient to consider programs for all T periods

such that production takes place in period t*¥ . In Table 1 we present an

Y




example in which the proposition is violatad; the optimal two-period program

is to produce in period 2, whereas the optimal three-period program is to
produce only in period 1. Consequently, in the general case of non-increasing
marginal costs, the addition of a new period t* + 1 may cause a major re-ision

in an optimal plan for periods 1 through t*

Table 1

Period 1 Period 2  Period 3
Setup Cost 12 2 5
Unit Carrying C 0 0
Charge
Unit Cost 8 9 10
Selling Price 15 15 15
Amount 0 3 20
DemandeA.

IIT. Tie Case of Non-Decreasing Marginal Costs.

In [2] we described a recursive method for solving the class of
rroblems in whicn merginel cost 1s non-decreasing. Essentially the
tachnlgue involved finding a first triael solution for all T periods;
1f£ {he plan prcved %o be infeasible9, finding a second trial solution to
a smaller number of periods; and so forth, until finding a feasible
solution for periods t = 1,2,...,t* § T . If T <1 ; She method is

repeated for periods t = t* +1,...,T .

9

I 2., at some period, cumulative sales exceeded cumulative production.




Here we note that the ingenious method of S. Johnsor [1] extends
immedietely to our problem to provide an alternative mode of attack.
Specifically, it 1s possib.e to construct an optimal sales and production
pattern utilizing an algorithm starting et t = 1 , and successively
adding the data for each following period.

We define & "cascade function," to be superimposed ou Lhe Hysinn of
di agrams arraying each period's merginal curves, as & step function having
a singie horizontal step for eech period and such that the heights of the
steps are uon-increasing over time. Figure 1 shows an example of a cascade
function for a three-pericd model.

Thz algorithm for cousiructing an optimal solution proceeds as follows:

Step 1. In period 1 define the height of the step as the value of the
marginal cost curve at the output for which period 1 mrarglnal ccost an?
reveauc curves intersect. If the intersection 1s at a vertical segment of
the M curve, then the helght is defined as the value of MC on the immediale
left of ths intersection pcint.lo

The nrovisional velues for qs(l) and qo(l) are determined 23 the
ouvout at the intersection of the MR and MC ~urves. If “he __terdcco.On
is non-unigu=, then the largest seleable output on the locus of the inter-
sectlon 1s selected.

Step 2. The height of the cascade step for pericd 2 4s nrovisionally
set at the height of the step for period 1. The trial value for q0(2)

is the smallest output such that MC[qO(Z)] = the helight of the trial

R it mey heppen that at qo(l) = qs(l) = 0 , the MC curve lies above the

MR curve, in which case it is never profitable to sell any item in period 1;
the Feight of the cascade step is then defined as the value or the MC curve
on the immediste right of qo(l) =0 .
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step, and for qq(2) is the largest sales figure such that MR[qS(E)] =
the height of the trial step.

Case (1). If qo(2) = qs(2) , no alteration is made in the
provisional values.

Case (ii1). If qo(2) > qs(2) , then the height of the step for
period 2 must be lowered until equality obtains between the amount sold
and produced in period 2. In lowering the step, if a horizontel section
of the MR curve is reached, the sales figure should be increased as much
as possible toward meeting the equality condition. If a horizontal section
of the MC curve is reached, output should be curtailed as much as possible
toward meeting the equality condition. We adopt the rule that if hori-
zontal sections in the MR and MC functions are met simultaneously, the
increase in sales takes precedence over the decrease in output.

Case (i11). If qo(2) < qs(2) , then in this insvance cumulative
output over the two periods is not sufficient to meet cumulative demand.

If possible increase output in period 2 at the same marginal cost, with

& view toward meeting the condition that cumulative output equals cumu-
lative sales. Should the condition remain unsatisfied, if possible
increase output in period 1 at the same marginal cost. Should the
condition then remain unsatisfied, if possible decrease sales in period 2
at & value of marginal revenue equal to the provisional height of the step.
Should the condition continue to be unsatisfied, if possible decrease salesc
in period 1 at a value of margi.:t . »venue equal to the provisional heigat
of the step. Should the condition still remain unsatisfied, then raise

the height of the step, maintaining the cascade property by raising the
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height of the step for period 1 and altering, mutatis mutandis,

qo(t), qs(t), t = 1,2, until equality obtains between cumulative sales
and production.
In raising the height of the step, if horizontual segments in the
MR and MC curves are encountered, an increase in output takes precedence
(starting at the latest period being considered) over a decrease in sales.
Slep t*. The height of the cascade step for period t* 1s provision-
ally set at the height of the step for period ¢t¥ - 1. As in Step 2, trial
velues for qo(t*) and qs(t*) are determined.

Case (1). 1if qo(t*) = qs(t*) , then no alteration is made in
the provisional values.

Case (i1). If qo(t*) > qs(t*) , then the alteration given in
Step 2, Case (i1), 1s applied here.

Case (iii). 1If qo(t*) < qs(t*) , then if possible increase output
in period t%* at the same marginal cost, with a view toward meeting the
condition that cumulative output (t = 1,2,...,t*) equals cumulative
sales. Should the condlticn remain unsatisiied, if possible increase out-

put in perionds t* - 1, t¥ - 2,..., at the same marginal cost.ll Shouid

the condition continue to bYe unsatisfied, if possible decirease sales in
period t* - 1, t¥ - 2,..., at a value of marginal revenue equai to the
provisional height of the step. Finally, should the condition still

remein unsutisfied, then raise the height of the step, maintalning the

cascade vroperty by raising the height of the step for period t*-1 and any

b I.e., for all immediately preceding periods having the cascade function
at the same height as the current provisional value.
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previous periods as they become eligible, and altering, mutatis mutandis,

qo(t), qs(t), t =1,2,...,t% , until equality obtains between cumulative
seles and production. As in Step 2, Case (iii), increasing output takes
precedence over decreasing sales whenever such simultaneous alternatives
present themselves.

In summary, the algorithm calls for the successive adding of new
period demand and supply relatiouships, and cffecting revisions in a
fashion such that, at any given period, planned sales never increase and
planned production never decr~ases. The construction consequently main-
tains feasibility, for the adding of a new period either leaves the
previous periods' plans unchanged and the new period 1s considered by
1tself, or causes e revisinn of the previous plans such that cumulative
demand (at any period) decreases and cumulative production increases.

Tre cascade function ensures the marginal equalities necessary for a
constrained local opiimal feasible solution, and the assumptions that
MR is a non-iancreasing functicn and MU a non-decreuasing function guarantee

that any di scovered local optimum is also a glohal optimum.
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